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3R’s for sustainability

• Reduce 

• Reuse 

• Recycle 

Our approach

Heterogeneous system sustainability

(ECO-CHIP)

Reuse chiplet designs across 

multiple products

Reduced design carbon and 

manufacturing carbon
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Heterogeneous Integration (HI)

• Large SoCs are at reticle limit 

• To reduce costs and sustain Moore’s law HI enables two or more dies manufactured 
individually and integrated into a single package

• The key enabler for heterogeneous integration are advanced packaging techniques 

Source : Lawrence Lundy-Bryan FRSA,  LinkedIn post
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ECO-CHIP framework

Total  carbon is given by the sum of 

operational carbon across the lifetime of 

the chip  and the embodied carbon 

𝑪𝒕𝒐𝒕 = 𝑪𝒆𝒎𝒃 + 𝒍𝒊𝒇𝒆𝒕𝒊𝒎𝒆 × 𝑪𝒐𝒑

𝑪𝒆𝒎𝒃 = 𝑪𝒎𝒇𝒈 + 𝑪𝑯𝑰 + 𝑪𝒅𝒆𝒔

𝑪𝒆𝒎𝒃 - Embodied carbon

𝑪𝒎𝒇𝒈 - Manufacturing carbon

𝑪𝒅𝒆𝒔 - Design carbon

𝑪𝑯𝑰 - Carbon from HI 

(advanced packaging and area 

overheads)
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𝑪𝒕𝒐𝒕 = 𝑪𝒆𝒎𝒃 + 𝒍𝒊𝒇𝒆𝒕𝒊𝒎𝒆 × 𝑪𝒐𝒑

𝑪𝒐𝒑 = 𝑪𝒔𝒓𝒄,𝒖𝒔𝒆 × 𝑬𝒖𝒔𝒆

𝑪𝒐𝒑 - Operational carbon

𝑪𝒔𝒓𝒄,𝒖𝒔𝒆-Carbon intensity of energy source

𝑬𝒖𝒔𝒆 - Energy spend during usage
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Embodied carbon: Manufacturing

𝑪𝒎𝒇𝒈 = 𝑪𝑭𝑷𝑨 × (𝑫𝒊𝒆 𝒂𝒓𝒆𝒂 + 𝑾𝒂𝒔𝒕𝒆𝒅 𝒂𝒓𝒆𝒂)

 
 

𝑪𝑭𝑷𝑨 =
( 𝜼𝒇𝒂𝒃  × 𝑪𝒎𝒇𝒈 × 𝑬𝒎𝒇𝒈 + 𝑪𝒈𝒂𝒔 + 𝑪𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍)

𝒀𝒊𝒆𝒍𝒅

 𝜂𝑓𝑎𝑏 - Energy efficiency of lithography tools

 𝐸𝑃𝐴 - Energy consumed during manufacturing

 𝐶𝑔𝑎𝑠 - CFP from green house gas emission

 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 - CFP from sourcing the materials for fabrication

 𝑌𝑖𝑒𝑙𝑑 - Yield of design for particular process nodez

The manufacturing carbon for a die depends on its area, and amortized wasted area on the wafer

Enhanced the manufacturing carbon model from ACT to include area-dependent yield and efficiency 

of fabrication tools

ACT (prior 

work)
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Silicon bridge

Passive/active interposer package
3D chiplet stacking

Redistribution layer 

(RDL) fanout

PCB PCBPCB

PCBPCB



56

Embodied carbon: HI overheads
Silicon bridge

Passive/active interposer package
3D chiplet stacking

Redistribution layer 

(RDL) fanout

PCB PCB

𝑪𝑹𝑫𝑳  =
 𝑳𝑹𝑫𝑳  × 𝑬𝑷𝑳𝑨𝑹𝑫𝑳  × 𝑪𝒑𝒌𝒈 × 𝑨𝒑𝒂𝒄𝒌𝒂𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝑹𝑫𝑳)

PCB

PCBPCB

EPLA → Energy per unit area per layer



57

Embodied carbon: HI overheads
Silicon bridge

Passive/active interposer package
3D chiplet stacking

Redistribution layer 

(RDL) fanout

PCB PCB

𝑪𝒃𝒓𝒊𝒅𝒈𝒆  =
𝑵𝒃𝒓𝒊𝒅𝒈𝒆 × 𝑳𝒃𝒓𝒊𝒅𝒈𝒆× 𝑬𝑷𝑳𝑨𝒃𝒓𝒊𝒅𝒈𝒆  × 𝑪𝒑𝒌𝒈 × 𝑨𝒃𝒓𝒊𝒅𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝒃𝒓𝒊𝒅𝒈𝒆)
𝑪𝑹𝑫𝑳  =

 𝑳𝑹𝑫𝑳  × 𝑬𝑷𝑳𝑨𝑹𝑫𝑳  × 𝑪𝒑𝒌𝒈 × 𝑨𝒑𝒂𝒄𝒌𝒂𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝑹𝑫𝑳)

PCB

PCBPCB

EPLA → Energy per unit area per layer



58

Embodied carbon: HI overheads
Silicon bridge

Passive/active interposer package
3D chiplet stacking

Redistribution layer 

(RDL) fanout

PCB PCB

𝑪𝒃𝒓𝒊𝒅𝒈𝒆  =
𝑵𝒃𝒓𝒊𝒅𝒈𝒆 × 𝑳𝒃𝒓𝒊𝒅𝒈𝒆× 𝑬𝑷𝑳𝑨𝒃𝒓𝒊𝒅𝒈𝒆  × 𝑪𝒑𝒌𝒈 × 𝑨𝒃𝒓𝒊𝒅𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝒃𝒓𝒊𝒅𝒈𝒆)
𝑪𝑹𝑫𝑳  =

 𝑳𝑹𝑫𝑳  × 𝑬𝑷𝑳𝑨𝑹𝑫𝑳  × 𝑪𝒑𝒌𝒈 × 𝑨𝒑𝒂𝒄𝒌𝒂𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝑹𝑫𝑳)

PCB

Modeled as an additional die 

PCBPCB

EPLA → Energy per unit area per layer



59

Embodied carbon: HI overheads
Silicon bridge

Passive/active interposer package
3D chiplet stacking

Redistribution layer 

(RDL) fanout

PCB PCB

𝑪𝒃𝒓𝒊𝒅𝒈𝒆  =
𝑵𝒃𝒓𝒊𝒅𝒈𝒆 × 𝑳𝒃𝒓𝒊𝒅𝒈𝒆× 𝑬𝑷𝑳𝑨𝒃𝒓𝒊𝒅𝒈𝒆  × 𝑪𝒑𝒌𝒈 × 𝑨𝒃𝒓𝒊𝒅𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝒃𝒓𝒊𝒅𝒈𝒆)

𝑪𝟑𝑫  =
𝑵𝑻𝑺𝑽,𝒃𝒖𝒎𝒑,𝒃𝒐𝒏𝒅 × 𝑬𝑷𝑳𝑨𝑻𝑺𝑽,𝒃𝒖𝒎𝒑,𝒃𝒐𝒏𝒅  × 𝑪𝒑𝒌𝒈

𝒀𝒊𝒆𝒍𝒅(𝟑𝑫)

𝑪𝑹𝑫𝑳  =
 𝑳𝑹𝑫𝑳  × 𝑬𝑷𝑳𝑨𝑹𝑫𝑳  × 𝑪𝒑𝒌𝒈 × 𝑨𝒑𝒂𝒄𝒌𝒂𝒈𝒆

𝒀𝒊𝒆𝒍𝒅(𝑹𝑫𝑳)

PCB

Modeled as an additional die 

PCBPCB

EPLA → Energy per unit area per layer



60

Embodied carbon: Design carbon

Source: eInfochips

Design carbon of the system is the sum of:

• Design carbon of all chiplets amortized across the number 

of chiplets manufactured (design reuse)

• Design carbon of the overhead of integrating amortized 

across the number of systems packaged

The design carbon of a single chiplet is:
𝑪𝒅𝒆𝒔 = 𝒕𝒅𝒆𝒔 × 𝑷𝒅𝒆𝒔× 𝑪𝒔𝒓𝒄

 

𝒕𝒅𝒆𝒔 =
𝒕𝒗𝒆𝒓𝒊𝒇 + 𝒕𝑺𝑷&𝑹 + 𝒕𝒂𝒏𝒂𝒍𝒚𝒛𝒆 × 𝑵𝒅𝒆𝒔

𝜼𝑬𝑫𝑨

 𝑡𝑣𝑒𝑟𝑖𝑓,𝑖 - Compute time for verification

 𝑡𝑆𝑃&𝑅,𝑖 - Computing time for single synthesis, place, and route

 𝑡𝑎𝑛𝑎𝑙𝑦𝑧𝑒,𝑖 - Compute time for all simulation analysis 

 𝑁𝑑𝑒𝑠 - Number of design iterations

 𝜂𝐸𝐷𝐴 - EDA tool productivity
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ECO-CHIP results: Key takeaways

• Disaggregation to chiplets helps in 
lowering the overall CFP by 40%

40% reduction

Number of chiplets (Nc)
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ECO-CHIP results: Key takeaways

• Disaggregation to chiplets helps in 
lowering the overall CFP by 40%

• Technology mix and match can help 
reduce overall CFP by 36%

• Amortizing the design CFP across 
multiple systems can reduce design 
CFP by 80% 

 

Total number of chiplets (NMi) / Total systems(NS)

(Reuse Factor)

Upto 80% 

reduction
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ECO-CHIP results: Key takeaways

• Disaggregation to chiplets helps in 
lowering the overall CFP by 40%

• Technology mix and match can help 
reduce overall CFP by 36%

• Amortizing the design CFP across 
multiple systems can reduce design 
CFP by 80%

• Edge devices 

– 𝑪𝒆𝒎𝒃 dominates, 𝑪𝒐𝒑 already low

– Disaggregation helps lower 𝑪𝒆𝒎𝒃

• Cloud computing devices 

– Higher 𝑪𝒐𝒑 / 𝑪𝒆𝒎𝒃 ratio 

– Disaggregation helps lower 𝑪𝒆𝒎𝒃 

Cloud computing device: EMR 2-chiplet

Edge device: A15
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Conclusion

• Key contributions 

– Develop ECO-CHIP for heterogeneous systems 

▪ Model yield variations across multiple technology 
nodes for CFP analysis

▪ CFP modeling for design

▪ CFP of advanced packing architecture was modeled

– HI systems are pathways to sustainable computing 

▪ Moving to chiplet-based design reduced CFP by 40% 

▪ Can reduce up to 80% of design CFP by amortizing 
and increasing the reuse factor

▪ Chiplet and technology space exploration can reduce 
the overall CFP by 36%
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ECO-CHIP GitHub repository

• We have open-sourced ECO-
CHIP for broader access and 
awareness within the 
research community

Scan QR code for ECO-CHIP

https://github.com/ASU-VDA-Lab/ECO-CHIP
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Thank you!!
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