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NSF 22-060
Find Funding & Apply v Managevouraward v oo | D€Ar Colleague Letter: Design for Sustainability in Computing

March 15, 2022

Dear Colleagues:

.

' v Environmental impacts of computing technologies extend well beyond their energy consumption and require a holistic focus on broader sustainability. Negative impacts of
greenhouse gas emissions, depletion of rare earth elements, and e-waste are exacerbaled by the proliferation of computing throughout society and treatment of computing

% & |
5] f T ] I e b.l'
DeSIgn or Env.ronmenta suStalna I Ity systems as disposable commodities with planned obsolescence. Furthermore, environmental concerns range from the better-known carbon footprint from energy consumption

{e.g., cloud) to equally important concerns of embodied carDon“L generation of methane, carcinogens, volatile organic compounds, and eutrophication, among others

L] -
In computlng (DESC) . Widespread use of compute intensive technigues (e.g., blockchain and artificial intelligence), handling and moving massive amounts of data, the rollout of next generation

Home [/ Funding at NSF / Funding Search [ Design for Environmental Sustainability in Computing (DESC)

| NSF-WSCS 2024

NSF Workshop on Sustainable Computing for Sustainability

@ Important information for proposers
All proposals must be submitted in accordance with the requirements specified in this funding
opportunity and in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect. . T

T April 16, 2024 - April 17,2024, Alexandria, VA
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Supports foundational research addressing the substantial environmental
impacts of computing. Projects should surpass studies of energy efficiency
alone, pursuing dramatic improvements to overall sustainability.
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Challenges and demands

« Efficiency optimization
— Operational CFP drops 46%

« Rising embodied carbon
— Embodied CFP increases 110%
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Challenges and demands

« Efficiency optimization
— Operational CFP drops 46%

« Rising embodied carbon
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Prior work

Architectural Carbon Model Tool (ACT)
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Heterogeneous Integration (HI)

« Large SoCs are at reticle limit
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Heterogeneous Integration (HI)

« Large SoCs are at reticle limit

 To reduce costs and sustain Moore’s law HI enables two or more dies manufactured
iIndividually and integrated into a single package

* The key enabler for heterogeneous integration are advanced packaging techniques
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Better yield with
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Hl as a path towards sustainable computing
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ECO-CHIP framework

« Architecture parameter inputs
« Estimates embodied CFP

« Manufacturing

« Packaging

* QOperational CFP
* Integrate with third-party tools

Inputs

Architectural description
* # transistors
* Tech. node of chiplets

ECO-CHIP

Embodied carbon

(- Manufacturing carbon

Packaging/integration
* RDL fanout package

* Active/passive interposer
* EMIB (Si bridge)

* 3D stacked

* Yield estimation model
* Area scaling model
\.* Silicon wastage

J

Packaging carbon

Design resources
» # logic gates, design time

Volume
* # chiplets manufactured
L # systems manufactured
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Operating specification
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* Inter-die comm. model
. #S1 bridges and area model Y.

|
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Chiplet
dollar cost
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* Design time and #iterations
» Compute resources

. EDA tool efficiency )
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» Power scaling model

» Dynamic and leakage power model
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ECO-CHIP framework

Total carbon is given by the sum of
operational carbon across the lifetime of
the chip and the embodied carbon

CtOt — Cemb + lifetime X COp

Cemp = Cmfg + Cyr + Cyes

C.np - Embodied carbon
Cmfg - Manufacturing carbon

C 405 - Design carbon

Cy; - Carbon from Hi
(advanced packaging and area
overheads)
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ECO-CHIP framework

Total carbon is given by the sum of

operational carbon across the lifetime of

the chip and the embodied carbon

CtOt — Cemb + lifetime X

Cop

Cop = Csreuse X Eyse

- Operational carbon
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CS,,C use-Carbon intensity of energy source
E, s

- Energy spend during usage
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Embodied carbon: Manufacturing

The manufacturing carbon for a die depends on its area, and amortized wasted area on the wafer
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Embodied carbon: Manufacturing

The manufacturing carbon for a die depends on its area, and amortized wasted area on the wafer

Cmpg = CFPA X (Die area{{ Wasted area)\
f.a-"‘" _—_‘—_‘5::::\
ol IS
A AN
CFPA = (nfab X Cmfg X Emfg + Cgas + al) :, Q\
Yield T~ i/ \
/ 1}
Nrap - Energy efficiency of lithography tools \H\ H
[EPA - Energy consumed during manufacturing ACT (prior \! /}
Cgas - CFP from green house gas emission work) \}\ /{/
Crateriar -~ CFP from sourcing the materials for fabrication ‘\'%\ ///
Yield - Yield of design for particular process nodef} ANE mp
x‘*—-‘____ _____:'-'"
—_ N

Enhanced the manufacturing carbon model from ACT to include area-dependent yield and efficiency
of fabrication tools




Embodied carbon: HI overheads
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Embodied carbon: HI overheads
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Embodied carbon: Hl overheads

Silicon bridge
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Embodied carbon: Hl overheads

Silicon bridge
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Embodied carbon: HI overheads
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N TSV, bump,bond

X EPLATSV,bump,bond X Cpkg

Yield(3D)
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Embodied carbon: Design carbon

Design carbon of the system is the sum of:
« Design carbon of all chiplets amortized across the number

of chiplets manufactured (design reuse)

« Design carbon of the overhead of integrating amortized Design for Test RTL  pesianentry/  ChiP
(DFT) insertion Partitioning synthesis I?Sngc':;:a? Specification
across the number of systems packaged of chip é vortfioation é
5

The design carbon of a single chiplet is:

Cdes — tdes X P des X Csrc
Floor
/ planning
verlf + (tSP&R + tanalyze) X Ndes

td —
; — : -@"@I
. - . Placement Routing GDS I
tyerir,; - COmpute time for verification TS ackiree sy Stage ve.ﬁ'.ﬂii.on

tspgr.i - Computing time for single synthesis, place, and route
tanalyze,i - COMpute time for all simulation analysis

N4.s - Number of design iterations
Nepa - EDAtool productivity
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ECO-CHIP results: Key takeaways

» Disaggregation to chiplets helps in
lowering the overall CFP by 40%

@ L& HI overheads MEM |IOs [ | Digital logic

40% reduction

Sustainable Computing } 20-

Better yields with
smaller chiplets

0- L D U L Y U U D L D e e
3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of chiplets (Nc)




ECO-CHIP results: Key takeaways

» Disaggregation to chiplets helps in
lowering the overall CFP by 40%

» Technology mix and match can help

reduce overall CFP by 36% HI overheads [\ \| Memory|~ 110s Digital
60 - 7
S . I | 2| va~Slva 4 4
O 36% reduction
5 40 , . /
- . )] (&) i | 4 7 Vi Vi Z 2
Sustainable Computing } 4 = ‘=
52012 =
g | L c P
Better yields with o O
smaller chiplets 0 ; L AL LA N RN BN NN B N N R E| T " 1
/ 7, 7, 7, 7,7, 7,7, 7,10,10,10,10,10,10,10,10,10,
“Mix and match” ) 7, 7, 10,10,10,14,14,14, 7, 7, 7, 10,10,10,14,14,14,
of technology 7 14 7 1014 7 1014 7 1014 7 1014 7 10 14

nodes

J

7,7,10 => 7nm Logic
7nm IOs
10nm Memory

7,7,7 =>Monolithicon 7nm

Node combinations
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ECO-CHIP results: Key takeaways

» Disaggregation to chiplets helps in
lowering the overall CFP by 40%

« Technology mix and match can help
reduce overall CFP by 36%

« Amortizing the design CFP across
multiple systems can reduce design
CFP by 80%

\
Better yields with

smaller chiplets
/

“Mix and match”
of technology

nodes D
\

Chiplet reuse

across systems
J

Design CFP

(Eq. Kg of CO,)

0 2 4 6

8

Nc

Cdes i Cdes comm
- ch = ~ + ’
25 “ L Nu N
20 -
5_

Upto 80%

0 reduction
5_
0o+——— -

10

Total number of chiplets (N,;) / Total systems(Ng)

(Reuse Factor)
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ECO-CHIP results: Key takeaways

Cloud computing device: EMR 2-chiplet

« Disaggregation to chiplets helps in B Operational GFP ] Embodied GFP

lowering the overall CFP by 40% 700-
6004
« Technology mix and match can help O 500-
reduce overall CFP by 36% D300 i o
1l £ =
« Amortizing the design CFP across Ufgg g g
multiple systems can reduce design o= 11 11 J1 = ——
0) (7,7) (7,10) (7,14) (10,7) (10 10) (10,14) (14,7) (14,10
CFP by 80% . Node coEn)blnatlons
» Edge dewcgs 6“10‘: 272277277
~ Cemp dominates, C,, already low © s Pl 0 ] <
. . o -
— Disaggregation helps lower €y, 2°]e o
445 z
 Cloud computing devices w22 2
. . = =
— Higher C,p, | Copmp ratio 011%\1 T T AT P R M I R N
. . astas  as ,'\ A, s \0 \Q A0+ A0 RANIVACE
— Disaggregation helps lower Cpp, S e \Nc\:de (éOI‘?'IbII#&tIC\)I’IS(\Q e \\Q o

Edge deV|ce. A15
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Conclusion

« Key contributions

— Develop ECO-CHIP for heterogeneous systems

= Model yield variations across multiple technology
nodes for CFP analysis

= CFP modeling for design
= CFP of advanced packing architecture was modeled

— HI systems are pathways to sustainable computing
= Moving to chiplet-based design reduced CFP by 40%

= Can reduce up to 80% of design CFP by amortizing
and increasing the reuse factor

= Chiplet and technology space exploration can reduce
the overall CFP by 36%

40'_ B HI overheads RO MEM |27 10s [ | Digital logic
35-
30-
O .1
O 25-
s
© 20-
x -
= 15+
g
104
5_
0I'I'I'I'I'I'I'I'I'I'I'I'I'II
3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nc
XX HI overheads N\ Memory [~ 4 10s]| | Digital
60 - ]
S IS e sl
5 40
g')zo-l‘é‘) é
i S
s S
0?'I'I'I'I'I'I'I'I'I'I'I'I'%'I'I'I'I
7,7, 7,7, 7, 7, 7, 7, 7, 10,10, 10,10, 10, 10, 10, 10, 10,
7, 7, 7, 10,10,10,14,14,14, 7, 7, 7, 10,10,10, 14, 14, 14,
7 1014 7 1014 7 1014 7 1014 7 10 14 7 10 14

Node combinations
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ECO-CHIP GitHub repository

We have open-sourced ECO-
CHIP for broader access and
awareness within the
research community

1 “ ]'

"’?ﬁ f

Scan QR code for ECO-CHIP

https://github.com/ASU-VDA-Lab/ECO-CHIP

00 README 28 BSD-3-Clause license 4

ECO-CHIP : Estimation of Carbon Footprint of Chiplet-
based Architectures for Sustainable VLSI

[paper]

Carbon footprint estimator for heterogenous chiplet-based systems. ECO-CHIP is an analysis tool that analyzes the
operational and embodied CFP (design, manufacturing, and packaging). The tool supperts the following HI and
packaging architectures: RDL fanout, silicon bridge-based, passive and active interposer, and 3D integration. The tool
evaluates the crucial package/assembly carbon emissions essential for HI systems, considering size, yield, and
assembly process. In addition, it also estimates design CFP.

No packages published
Publish your first package

Contributors 2

VidyaChhabria

ChetanSudarshan Chetan Sudarshan

Languages

L]
® Python 100.0%

Suinnactard ywinrlflons

Published November 10, 2023 | Version v2

ECO-CHIP: Estimation of Carbon Footprint of Chiplet-based Architectures for
Sustainable VLSI: HPCA 2024 Artifact Evaluation

Choppali Sudarshan, Chetan' Matkar, Nikhil'; Vrudhula, Sarma’; Sapatnekar, Sachin?; Chhabria, Vidya! Hide affiiations

1. ROR Arizona State University
2. ROR University of Minnesota

91 9

@ VIEWS & DOWNLOADS

» Show more details

Versions

Version v2 Nov 10, 2023
fzenodo. 10223759

NOX

@
g
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