

GreenFPGA: Evaluating FPGAs as Environmentally Sustainable Computing Solutions

Chetan Choppali Sudarshan, Aman Arora, Vidya A. Chhabria

DAC 2024

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- GreenFPGA
 - FPGA as sustainable computing solution
 - GreenFPGA framework
 - GreenFPGA modeling
- Results and analysis
- Conclusion and takeaway

Introduction

- Prior work
 - Architectural carbon footprint modeling (ACT)
- GreenFPGA
 - FPGA as sustainable computing solution
 - GreenFPGA framework
 - GreenFPGA modeling
- Results and analysis
- Conclusion and takeaway

Information and Computing Technology (ICT)

Data Center and Networks

User devices

Information and Computing Technology (ICT)

Data Center and Networks

User devices

- ICT contributes to 3-4% of the total world CFP
- Need for sector-wide regulations

Source : C. Freitag et al., Patterns 2021

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packing CFP
 - Deployment CFP
 - End of life CFP
- Operational CFP
 - CFP from end-user

Recent observation and challenge

Source : Apple sustainability reports

Recent observation and challenge

- Efficiency optimization
 - Operational CFP drops 46%
- Rising embodied carbon
 - Embodied CFP increases

Source : Apple sustainability reports

Recent observation and challenge

- Efficiency optimization
 - Operational CFP drops 46%
- Rising embodied carbon
 - Embodied CFP increases 110%

Source : Apple sustainability reports

Introduction

- Prior work
 - Architectural carbon footprint modeling (ACT)
- GreenFPGA
 - FPGA as sustainable computing solution
 - GreenFPGA framework
 - GreenFPGA modeling
- Results and analysis
- Conclusion and takeaway

Prior work

Architectural Carbon Model Tool (ACT) [/SCA 2022]

- Carbon-aware exploration framework
- Architectural model estimating embodied carbon
- Based on industry reports

Prior work

Architectural Carbon Model Tool (ACT) [/SCA 2022]

- Carbon-aware exploration framework
- Architectural model estimating embodied carbon
- Based on industry reports

ECO-CHIP [HPCA 2024]

- Proposes heterogeneous integration as a pathway toward sustainability
- Estimates design and multiple advanced packaging architecture CFP
- Framework also evaluates operational CFP

FPGA as a sustainable computing solution

Sustainable Computing

Reconfigure for multiple applications

FPGA as a sustainable computing solution

FPGA as a sustainable computing solution

- Input architectural parameters
- Estimates embodied CFP
 - Manufacturing
 - Design
 - Packaging
 - End of life
- Deployment CFP
 - Application development carbon
 - Operational carbon

- Input architectural parameters
- Estimates embodied CFP
 - Manufacturing
 - Design
 - Packaging
 - End of life
- Deployment CFP
 - Application development carbon
 - Operational carbon

- Input architectural parameters
- Estimates embodied CFP
 - Manufacturing
 - Design
 - Packaging
 - End of life
- Deployment CFP
 - Application development carbon
 - Operational carbon

- Input architectural parameters
- Estimates embodied CFP
 - Manufacturing
 - Design
 - Packaging
 - End of life
- Deployment CFP
 - Application development carbon
 - Operational carbon

- Input architectural parameters
- Estimates embodied CFP
 - Manufacturing
 - Design
 - Packaging
 - End of life
- Deployment CFP
 - Application development carbon
 - Operational carbon

- Total number of applications

Napp

- C_{deploy} Deployment carbon
- *N_{app}* Total number of applications

- Total number of applications

 N_{app}

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$
$$C_{emb} = C_{des} + \left(N_{vol} \times N_{FPGA} \times \left(C_{mfg} + C_{pkg} + C_{EOL}\right)\right)$$

 $C_{des} = \text{Design carbon}$

 N_{vol} – Volume of FPGA manufactured

 N_{FPGA} – Total number of FPGAs used for 1 application

 C_{mfg} – Manufacturing carbon

 C_{pkg} – Packaging carbon

 C_{EOL} – End of life carbon

$$C_{FPGA} = \boxed{C_{emb}} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$
$$C_{emb} = \boxed{C_{des}} + \left(N_{vol} \times N_{FPGA} \times \left(C_{mfg} + C_{pkg} + C_{EOL}\right)\right)$$

 $C_{des} = \text{Design carbon}$

- N_{vol} Volume of FPGA manufactured
- N_{FPGA} Total number of FPGAs used for 1 application
- $C_{mf,g}$ Manufacturing carbon
- C_{pkg} Packaging carbon
- C_{EOL} End of life carbon

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$

$$C_{emb} = C_{des} + \left(N_{vol} \times N_{FPGA} \times \left(C_{mfg} + C_{pkg} + C_{EoL}\right)\right)$$

$$C_{des} = \text{Design carbon}$$

$$N_{vol} - \text{Volume of FPGA manufactured}$$

$$N_{FPGA} - \text{Total number of FPGAs used for 1 application}$$

$$C_{mfg} - \text{Manufacturing carbon}$$

- C_{pkg} Packaging carbon
- C_{EOL} End of life carbon

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$
$$C_{emb} = C_{des} + \left(N_{vol} \times N_{FPGA} \times \left(C_{mfg} + C_{pkg} + C_{EOL}\right)\right)$$

 $C_{des} = \text{Design carbon}$

- N_{vol} Volume of FPGA manufactured
- N_{FPGA} Total number of FPGAs used for 1 application
- $C_{mf,g}$ Manufacturing carbon
- C_{pkg} Packaging carbon
- C_{EOL} End of life carbon

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$

$$C_{deploy} = C_{app-dev} + C_{op}$$

 $C_{app-dev}$ - Application development carbon C_{op} - Operational carbon T_i - Application lifetime for app i

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$

$$C_{deploy} = C_{app-dev} + C_{op}$$

 $C_{app-dev}$ – Application development carbon

 C_{op} – Operational carbon

 T_i – Application lifetime for app i

$$C_{FPGA} = C_{emb} + \sum_{i=1}^{i=N_{app}} T_i \times C_{deploy,i}$$

$$C_{deploy} = C_{app-dev} + C_{op}$$

 $C_{app-dev}$ - Application development carbon

 C_{op} – Operational carbon

 T_i – Application lifetime for app i

Design carbon is carbon that arises from the design phase and is given by :

Carbon emissions due to hardware development to reconfigure the FPGA to different application

 $T_{app-dev} = N_{app} \times (front + back end dev) + N_{vol} \times T_{app,config}$

Carbon emissions due to hardware development to reconfigure the FPGA to different application

 $T_{app-dev} = N_{app} \times (front) + back end dev) + N_{vol} \times T_{app,config}$

Carbon emissions due to hardware development to reconfigure the FPGA to different application

 $T_{app-dev} = N_{app} \times (front + back end dev) + N_{vol} \times T_{app,config}$

Carbon emissions due to hardware development to reconfigure the FPGA to different application

 $T_{app-dev} = N_{app} \times (front + back end dev) + N_{vol} \times T_{app,config}$

Carbon emissions due to hardware development to reconfigure the FPGA to different application

 $T_{app-dev} = N_{app} \times (front + back end dev) + N_{vol} \times T_{app,config}$

Front and back-end development time is done once per application, and then configured on all the FPGAs

 N_{app} - Total number of applications N_{vol} - Application volume $T_{app,config}$ - Duration of the design project

 $C_{app-dev} = P_{app-dev} \times T_{app-dev} \times C_{src}$

 $P_{app-dev}$ - Power of CPU used for app-dev C_{src} - Carbon intensity of energy source

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- GreenFPGA
 - FPGA as sustainable computing solution
 - GreenFPGA framework
 - GreenFPGA modeling
- Results and analysis
- Conclusion and takeaway

GreenFPGA results and analysis

- Compare ASIC to FPGAs at iso-performance
- Analyzed for three application domains
 - Deep neural networks (DNN)
 - Image processing (ImgProc)
 - Cryptography (Crypto)

Testcases	Crypto	ImgProc	DNN
Area (normalized to ASIC)	1	7.42	4
Power (normalized to ASIC)	1	1.25	3

Source : T. Tan's PhD dissertation, 2023

- [T. Tan,2023] emphasizes that ASICs are designed for architectural application and lack reconfigurability and flexibility.
- FPGAs are highly reconfigurable with the ability to be tuned for specific application

Analysis: Number of applications

- Number of applications swept keeping volume and application lifetime constant
- Compared ASIC and FPGA for iso-performance
- Power and area variations for different application domains impact A2F cross over point

Analysis: Application lifetime

- Application lifetime swept keeping number of application and volume constant
- Image processing ASIC is better due to lower power and area
- FPGA sustainable for DNN applications for shorter lifetime with F2A point at 1.6 years

Analysis: Application volume

- Application volume swept keeping the number of applications and application lifetime constant
- FPGA is environmentally sustainable for lower application volume
- F2A crossover point determined by power and area variation for iso-performance

- Embodied CFP of FPGA stays the same, while that of ASIC increases as the number of applications increase
- Increase in operational CFP of ASIC is lesser compared to FPGA as application lifetime increases

- Embodied CFP of FPGA stays the same, while that of ASIC increases as the number of applications increase
- Increase in operational CFP of ASIC is lesser compared to FPGA as application lifetime increases

- Embodied CFP of FPGA stays the same, while that of ASIC increases as the number of applications increase
- Increase in operational CFP of ASIC is lesser compared to FPGA as application lifetime increases

- Embodied CFP of FPGA stays the same, while that of ASIC increases as the number of applications increase
- Increase in operational CFP of ASIC is lesser compared to FPGA as application lifetime increases

- Embodied CFP of FPGA stays the same, while that of ASIC increases as the number of applications increase
- Increase in operational CFP of ASIC is lesser compared to FPGA as application lifetime increases

Conclusion and key takeaways

- Embodied CFP of the FPGA is amortized across multiple applications unlike ASICs
- FPGAs are a good solution sustainably compared to ASICs if we have 6 or more applications for DNN test case
- Considering DNN if the probability of changing applications frequently is less than 1.6yrs, FPGAs are good sustainable solutions
- FPGAs are environmentally sustainable for lower application volume

https://github.com/ASU-VDA-Lab/GreenFPGA

Scan QR code for GreenFPGA

