

Beyond the Surface: The Necessity for Detailed Metrics in Corporate Sustainability Reports

Chetan Choppali Sudarshan, Aman Arora, and Vidya A. Chhabria

IGSC 2024

Information and Computing Technology (ICT)

Data Center and Networks

User devices

Source : C. Freitag et al., Patterns 2021

Information and Computing Technology (ICT)

Data Center and Networks

User devices

• ICT contributes to 3-4% of the total world carbon footprint (CFP) Source : C. Freitag et al., Patterns 2021

Information and Computing Technology (ICT)

Data Center and Networks

User devices

- ICT contributes to 3-4% of the total world carbon footprint (CFP) Source : C. Freitag et al., Patterns 2021
- Need for sector-wide regulations

Objectives of this work

Objective 1: Call to action for the industry to include detailed data in sustainability reports

Objective 1: Call to action for the industry to include detailed data in sustainability reports

Objective 2: Call to action for the **community** to incorporate **sustainability-oriented** metrics for benchmarking chips and architectures

Objective 1: Call to action for the **industry** to include **detailed data in sustainability reports**

- What are in corporate sustainability reports today?
- What should sustainability reports include in the future?
- Importance of including detailed data in the report.

Sustainability reports today

Sustainability reports today

Greenhouse gas emissions	iPhone 15 Pro 128GB	iPhone 15 Pro Max 256GB
Total product footprint	66 kg CO ₂ e	75 kg CO ₂ e
Apple emissions from utility-purchased electricity (scope 2)	0 kg CO ₂ e	0 kg CO ₂ e
Life cycle product emissions (scope 3)	66 kg CO ₂ e	75 kg CO ₂ e
Production	83%	83%
Transportation	3%	3%
Product use	15%	15%
End-of-life processing	<1%	<1%
GHG reductions achieved ⁹	↓29%	↓30%
Note: Percentages may not total 100 due to rounding.		

Source : Apple sustainability reports

Objective 1: Call to action for the industry to include detailed data in sustainability reports

- What are in corporate sustainability reports today?
- What should sustainability reports include in the future?
- Importance of including detailed data in the report.

Source : Apple sustainability reports

Source : Apple sustainability reports

Source : Apple sustainability reports

14

Source : Apple sustainability reports

Source : Apple sustainability reports

Source : Apple sustainability reports

Detailed lifecycle analysis of a product

Source : Apple sustainability reports

Source : Apple sustainability reports

Source : Apple sustainability reports

Today's report

Today's report

Future report

Source : ifixit

Objective 1: Call to action for the industry to include detailed data in sustainability reports

- What are in corporate sustainability reports today?
- What should sustainability reports include in the future?
- Importance of including detailed data in the report.

Importance of the detailed data – Discrepancies in CFP

Importance of the detailed data – Discrepancies in CFP

- Phone CFP trend over the years from sustainability reports
- Processor CFP increasing
- Need for more granular sustainable metrics in the reports

• "Operational CFP %" has remained almost constant over the years

- "Operational CFP %" has remained almost constant over the years
- "Embodied CFP %" has increased over the years

Objective 2: Call to action for the **community** to incorporate **sustainability-oriented** metrics for benchmarking chips and architectures

- Traditional metrics in the chip design
- Proposed metrics for benchmarking chip design and processors for sustainability

Traditional Metrics

• Processor

- Power, performance, area
- Latency bandwidth
- Cost
- Performance per Watt
- Throughput
- Process node

Traditional Metrics

• Processor

- Power, performance, area
- Latency bandwidth
- Cost
- Performance per Watt
- Throughput
- Process node
- Memory
 - Refresh rate
 - Area
 - Density

Traditional Metrics

- Processor
 - Power, performance, area
 - Latency bandwidth
 - Cost
 - Performance per Watt
 - Throughput
 - Process node
- Memory
 - Refresh rate
 - Area
 - Density

Sustainability Metrics

• Performance Sustainability Index (Perf-SI)

Traditional Metrics

• Processor

- Power, performance, area
- Latency bandwidth
- Cost
- Performance per Watt
- Throughput
- Process node

• Memory

- Refresh rate
- Area
- Density

Sustainability Metrics

- Performance Sustainability Index (Perf-SI)
- Workload-dependent carbon footprint

Traditional Metrics

Processor

- Power, performance, area
- Latency bandwidth
- Cost
- Performance per Watt
- Throughput
- Process node
- Memory
 - Refresh rate
 - Area
 - Density

Sustainability Metrics

- Performance Sustainability Index (Perf-SI)
- Workload-dependent carbon footprint
- Carbon per billion transistors

Traditional Metrics

Processor

- Power, performance, area
- Latency bandwidth
- Cost
- Performance per Watt
- Throughput
- Process node
- Memory
 - Refresh rate
 - Area
 - Density

Sustainability Metrics

- Performance Sustainability Index (Perf-SI)
- Workload-dependent carbon footprint
- Carbon per billion transistors
- Mobile SSD:
 - CFP/GB
 - Memory CFP per unit area

Performance Sustainability Index- Performance per CO2eq.

 $Perf - SI = \frac{Performance}{Total \ CO_2 eq.}$

Performance Sustainability Index- Performance per CO2eq.

- The total CFP considers contributions of both embodied and operational CFP
- CFP and performance have a relation with each other, and this metric can help make sustainable design decisions

Performance Sustainability Index-Performance per CO₂eq.

- The total CFP considers contributions of both embodied and operational CFP
- CFP and performance have a relation with each other, and this metric can help make sustainable design decisions
- Perf-SI considers the device's area, power, and sustainably impact along with performance for comprehensive evaluation.

Workload-dependent carbon footprint

 $C_{workload} = T_{workload} \times P \times CI$

Workload-dependent carbon footprint

$C_{workload} = T_{workload} \times P \times CI$

- $T_{workload}$: Time taken to run the workload
- *CI*: Carbon intensity (Kgs of CO₂ eq. per kWh)
- *P*: Processor power

Workload-dependent carbon footprint

- $C_{workload} = T_{workload} \times P \times CI$
 - *T_{workload}* : Time taken to run the workload
 - CI: Carbon intensity (Kgs of CO2 eq. per kWh)
 - P: Processor power
 - Consider workload targeting
 - ML applications
 - GPU
 - CPU
 - Useful for comparing devices based on workload

Transistors CFP contribution – CFP per billion transistor

- CFP should be considered the primary optimization metric, alongside power, area, and performance (PPA)
- Advanced technology nodes require complex steps, including sophisticated lithography processes, which result in a higher CFP per unit area in the latest technologies

Transistors CFP contribution – CFP per billion transistor

- CFP should be considered the primary optimization metric, alongside power, area, and performance (PPA)
- Advanced technology nodes require complex steps, including sophisticated lithography processes, which result in a higher CFP per unit area in the latest technologies

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

- Memory density (GB/mm²) has increased over the years
- The increase in memory density offsets the CFP increase, resulting in CFP/GB to have a downward trend

Conclusion

Objective 1: Call to action for the **industry** to include **detailed data in sustainability reports**

Conclusion

Objective 1: Call to action for the **industry** to include **detailed data in sustainability reports**

Objective 2: Call to action for the **community** to incorporate **sustainability-oriented** metrics for benchmarking chips and architectures

Thank you

